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Outline of Presentation

2

Power Delivery Challenges in Heterogenous 3D (H3D)

Integrated Circuits

High-Efficiency On-Chip DC-DC Voltage Converters

Back-End-of-Line Compatible On-Chip Components
• Amorphous Oxide Semiconductor (AOS) Power Transistors

• Enhancement- and Depletion-Mode AOS Power Transistors

• High-Density Capacitors with High Breakdown Voltage

On-Chip DC-DC Converter Performance

Summary



Heterogenous Integrated Circuits
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Adapted from HIR 2019

➢With a variety of chiplets seamlessly integrated, heterogenous ICs enable 

system performance scaling.



Example: Transformer Accelerator
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Transformer architecture Technology mapping

➢ Compute unit                    
(for attention, feedforward, etc.)

• Leading-edge logic node

➢ Weight memory            
(for pre-trained weight storage)

• Infrequent write operations

• Non-volatile memory

➢ Global buffer                   
(for attentional caches, etc.)

• Frequent write operations

• Lower write time & energy

• Higher endurance

• Higher memory density340B176B 280B 1.7T

# of model parameters

1.085T



Multiple Voltage Domains in Heterogenous ICs
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➢ In heterogenous ICs, different functional tiers may adopt various technology 

nodes, requiring multiple voltage domains.

3 V

1.5 V

0.75 V

Multi-Tier Stacked Transformer Accelerator 

IWO FeFET
• Weight memory

• 22 nm node

2T0C eDRAM
• Global buffer

• 7 nm node

Nanosheet FET
• Compute unit

• 2 nm node



Power Delivery Challenges in Heterogenous ICs
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In heterogenous ICs (with multiple supply voltage domains):

❖ Increased power density demands cause >10% IR drops and routing losses

❖ Off-chip voltage converters increase package footprint

❖ Long inter-tier signal length (>100 µm) rises data access latency



H3D ICs with On-Chip Voltage Converters
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On-chip 

voltage 

converter

➢Heterogenous 3D (H3D) architecture with on-chip voltage converters 

(at least from input 12V to 0.75V) in each tier provides a reduction in 

IR drop, area, and memory access latency.



On-chip DC-DC Converter Options 
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• Pros:  high efficiency across a wide range 

  of output voltages (off-chip)

• Cons: large area

  increased fab cost & complexity

  degraded performance (on-chip)

Switched-Capacitor (SC)Switched-Inductor

• Pros: CMOS Compatible

  Lower intrinsic loss

• Cons: Efficiency vs. conversion ratio

  (determined by topology)



Feasible M3D Integration for SC DC-DC Converters
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OR

➢Monolithic 3D (M3D) integration can further improve power density 

and area efficiency of SC DC-DC converters in either backside or 

frontside BEOL.
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Technology Requirement 
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Category Parameter Target

On-chip SC 

DC-DC 

converters 

Voltage conversion 12 V to 6 V

Power density 1 W/mm2 

peak efficiency 84%

BEOL-

compatible 

power FETs

On-resistance 14 mΩmm2

Breakdown >12 V

Switching freq. 100 MHz

Enhancement & 

depletion mode?
Yes

BEOL-

compatible 

flying capacitors

Breakdown >6 V

Capacitance density 400 fF/um2

Leakage density 50 pA/mm2



Materials Candidates for Device Components at BEOL 
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➢Amorphous oxide semiconductors for power switches and nanolaminate 

fluorites for flying capacitors are promising candidates.

Flying Capacitors at BEOL
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IWO MOSFET with G-D Overlap (Conventional)
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W/LG = 10 µm/500 nm, Loffset = -300 nm

➢Device fabrication max temperature is below 300°C.

➢Off-state drain breakdown voltage (VBD) in the conventional IWO FETs 

with G-D overlap is ~7 V.

Conventional FET 

with G-D Overlap

LG

Loffset



IWO Power FETs with G-D Offset
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➢Peak electric field along channel length is reduced by 12.7x in the 

power FETs with G-D offset compared to the conventional MOSFETs.

Conventional FET 

with G-D Overlap

Power FET with 

G-D Offset



IWO Conductivity Modulation for E- & D-mode Power FETs
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➢Key strategy: IWO conductivity (and device VTH) can be modulated 

by oxygen flow rate in IWO deposition. 
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E- & D-mode IWO Power FET Process Flow

15 ➢Process temperature remains below 300°C.

2. Gate electrode (25 nm Pd) dep. & pat.

1. Buffer layer (90 nm SiO2 + 15 nm HfO2) dep.

3. Gate insulator (35 nm HfO2, PEALD, 250 ℃) dep. 4. LC-IWO dep. & pat. for E-mode channel 

    (5 nm, 6 sccm O2 for sputtering) 

5. HC-IWO dep. & pat. for D-mode channel & 

    offset region (8 nm, 0.6 sccm O2 for sputtering)

6. Source/drain contact (40 nm Pd) dep. & pat.



E- & D-mode IWO Power FET Co-integration
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Transfer Characteristics
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➢The E-mode power FETs have a positive VTH (=1.1 V @Loffset = 800 nm) and 

the D-mode power FETs show a negative VTH (=-1.7 V @Loffset = 800 nm).

E-mode (LG = 600 nm) D-mode (LG = 600 nm)
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Specific On-Resistance 
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➢The power FETs show >10x larger Ron,sp than the conventional MOSFETs.

➢1.7x increase in Loffset leads to 1.8x (E) and 2.6x (D) increase in Ron,sp.
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Drain Breakdown Voltage
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12 V
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➢The power FETs show a off-state drain VBD of >12 V, which is >3x higher 

than the conventional MOSFETs.

➢Tradeoff: 3-4x increase in VBD for ~14x increase in Ron,sp.
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Switching Characteristics
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➢E- and D-mode devices (Loffset = 800 nm) exhibit an estimated switching 

frequency fT of 90 MHz and 192 MHz, respectively.

𝒇𝑻 =
𝒈𝒎

𝟐𝝅𝑪𝑮𝑮

-12 -8 -4 0 4 8 12

4

6

8

10

12

C
G

G
 (

fF
/m

m
)

VGS (V)

 E-mode

 D-mode
LG=600nm

Loffset=800nm

Freq. = 0.5, 1, 2, 3 MHz

-12 -8 -4 0 4 8 12

0

5

10

15

g
m

 (
m

S
/m

m
)

VGS (V)

 E-mode

 D-mode

LG=600nm  Loffset=800nm

VDS=12V



Pulse Response
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➢Both devices (at VDS=12 V) can respond to the 50-ns-wide input gate pulses.
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Benchmarking of BEOL Compatible Power FETs
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➢ IWO power FETs show >1000x 

reduction in Ron,sp compared with 

other BEOL-compatible power 

FETs. 

➢LDMOS with similar VBD have 

lower Ron,sp, but this technology is 

BEOL incompatible. 

[1] G. Yang, et al., TED 2021. [2] C. Park, et al., EDL 2021. 

[3] H. Huo, et al., Semicond Sci Tech 2021. [4] H.C. Cheng, 

et al., J. Electrochem. Soc. 2004. [5] P.Y. Huang, et al., 

ISPSD 2014. [6] H. Lin, et al., VLSI 2021. [7] S.Y. Chen, et 

al., TED 2021. [8] A. Houadef, et al., Eng. Proc. 2022. 
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On-chip Superlattice MIM Capacitors
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➢H0.25Z0.75O2 superlattice laminate: improve dielectric constant.

➢Al2O3 interlayer: suppress m-phase formation and limit leakage in thicker 

superlattice stacks.



Benchmarking of On-Chip Planar Superlattice MIM Capacitors 
for High-Voltage Applications

24

➢>34x reduction in leakage current 

with a high capacitance density 

(>10 fF/um2). 

➢VBD withstands the max. DC voltage 

stress for 2:1 step-down conversion 

from 12 V.

[1] H. Lin, et al., TVLSI 2022. [2] C. Fang, et al., EDL 

2019. [3] G, Hellings, et al., VLSI 2015. [4] W. S. Liao, et 

al. IEDM 2014. [5] J. Kim, IEEE 3DIC 2015. [6] Q. -X. 

Zhang, et al. EDL 2014. [7] L. Zhang, et al. EDL 2009.
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Reliability of High-Voltage On-Chip Superlattice MIM Capacitors

Weibull distribution at different temps.
Lifetime projection

➢Poole-Frenkel conduction (ln(𝐽) ∝ 𝐸 ) dominates at 6 V.

➢Projected lifetime of ~10 years at 6 V, 120°C ensures reliable on-chip 

voltage conversion from 12 V to 6 V.



H3D Integrated Transformer Accelerator using On-Chip SC 
DC-DC Converters
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Tier FeFET eDRAM Logic

Application Weight memory Global buffer
self-attention & other 

kernel computing

Technology Node 22 nm 7 nm 2 nm

Device IWO IWO CMOS

Supply voltage 3 V 1.5 V 0.75 V

Area 810.8 mm2 817.9 mm2 *719.2 mm2

Bonding Face-down Face-down Face-up

BEOL

Power delivery
Front-side Front-side Back-side

Power density 1 mW/mm2 4 mW/mm2 *137.8 mW/mm2

Capacity 8 GB 16 GB -

➢On-chip SC DC-DC converters are used to efficiently convert input voltage 

at the interposer level to the lower supply voltage domains required in 

each tier.



Multi-Stage On-Chip SC DC-DC Converters
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➢ Input voltage directly delivered from the interposer to each tier in parallel.

➢ In each tier, cascaded unit SC DC-DC converters provide the desired supply 

voltages by multi-stage conversion.



SPICE Simulation on Voltage Conversion
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➢The converters achieve ~83% efficiency (with a reasonable voltage 

ripple of 38 mV). 

➢ Intrinsic loss is 3.4x higher than switching loss .



Design Optimization and Benchmarking

29

➢Transition from 2D planar to 3D trench flying capacitors shows 3.3× 

increase in power density. 

➢Potentially competitive against SOTA FEOL-compatible technologies.
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Summary

30

▪ Demonstrated the BEOL-compatible IWO power 

FETs with a drain VBD of >12 V and a fT of 192 MHz.

▪ Developed both E- and D-mode IWO power FETs, 

which could be co-integrated on the same chip.

▪ Demonstrated high-density high-voltage on-chip 

superlattice MIM capacitors with a projected lifetime 

of ~10 years at 120℃ and 6 V.

▪ Analyzed the performance of on-chip SC DC-DC 

converters showcasing a high efficiency of ~83% for 

H3D integrated transformer accelerators.
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